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Abstract

We consider the Dirac equation on the background of a Kerr–Newman–de
Sitter black hole. By performing variable separation, we show that no time-
periodic and normalizable solution of the Dirac equation is allowed, which
amounts to the absence of quantum bound states for the Dirac Hamiltonian.
This conclusion holds true even for extremal black holes. With respect to
previously considered cases, the novelty is represented by the presence, in
addition to a black hole event horizon, of a cosmological (non-degenerate)
event horizon, which is at the root of the possibility to draw a conclusion on
the aforementioned topic in a straightforward way even in the extremal case.

PACS numbers: 03.65.Pm, 04.70.−s

1. Introduction

In this paper, we extend results obtained for the Dirac equation on the background of a Kerr–
Newman–AdS black hole [1] to the case of a Kerr–Newman–de Sitter black hole. The main
differences between the AdS and the dS case are the presence of a positive cosmological
constant in the dS case (to be compared with the negative cosmological constant of the AdS
case), the replacement of a boundary-like behavior of infinity in the AdS case with the presence
of a further (non-degenerate) event horizon in the dS case: the cosmological horizon appears.
In the dS case, problems with the lack of global hyperbolicity disappear and a good behavior
of the wave operators is shown to be allowed. From the point of view of quantum field theory
on the given background, with respect to the case of a single event horizon, further difficulties
arise, due to the presence in the non-extremal case of two different background temperatures
which make a rigorous analysis more difficult. We do not deal with this problem herein,
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and we limit ourselves to studying the problem of the absence of time-periodic normalizable
solutions of the Dirac equation (which amounts to the absence of a point spectrum for the Dirac
Hamiltonian, i.e. of quantum bound states [1]). The latter topic has given rise to a number
of studies in the recent literature [2–10], mostly involved in black holes of the Kerr–Newman
family, or still in the absence of a cosmological constant. We also considered this problem in
the case of Kerr–Newman–AdS black holes [1]. In the aforementioned studies the absence
of time-periodic normalizable solutions of the Dirac equation has been proved mainly in the
non-extremal case. The extremal one has been shown to require further investigation, and in
the Kerr–Newman case the existence of normalizable time-periodic solutions was proved in
[5, 6].

It is a peculiar property of the background considered herein to forbid the existence of
time-periodic normalizable solutions for the Dirac equation even in the extremal case, and this
can be proved in a rather straightforward way. Naively, the presence of a cosmological event
horizon, which is surely non-degenerate in our setting, does not allow normalizability of the
solutions to be obtained near the cosmological horizon. This peculiar presence is shown to be
at the root of the fact that the reduced radial Hamiltonian, obtained by variable separation, has
an absolutely continuous spectrum which coincides with R, and then no quantum bound state
is allowed.

2. The Kerr–Newman–dS solution

The background geometry underlying our problem arises as follows. One first solves the
Einstein–Maxwell equations with a cosmological constant, and next adds a Dirac field
minimally coupled to the electromagnetic field. The Einstein–Maxwell action is

S[gμν, Aρ] = − 1

16π

∫
(R − 2�)

√
−det g d4x − 1

16π

∫
1

4
FμνF

μν
√

−det g d4x, (2.1)

where � = 3
l2 is the positive cosmological constant, R is the scalar curvature and Fμν is the

field strength associated with the potential 1-form A:

F = dA, Fμν = ∂μAν − ∂νAμ, (2.2)

R = gμνRμν, Rμν = ∂ρ�
ρ
μν − ∂ν�

ρ
μρ + �σ

μν�
ρ
σρ − �σ

μρ�
ρ
σν, (2.3)

�μ
νρ = 1

2gμσ (∂νgσρ + ∂ρgσν − ∂σ gνρ). (2.4)

The equations of motion are

Rμν − 1
2 (R − 2�)gμν = −2

(
Fρ

μFνρ − 1
4gμνFρσF ρσ

)
, (2.5)

∂μ(
√

− det gFμν) = 0. (2.6)
With respect to a set of vierbein 1-forms

ei = ei
μ dxμ, i = 0, 1, 2, 3, (2.7)

we have

ds2 = g = ηij ei ⊗ ej , gμν = ηij e
i
μej

ν , (2.8)

where η = diag(−1, 1, 1, 1) is the usual flat Minkowski metric, so that, as usual, we define
the so(1, 3) valued spin connection 1-forms ωi

j such that

dei + ωi
j ∧ ej = 0. (2.9)

We will consider the following background solution.

2



J. Phys. A: Math. Theor. 42 (2009) 135207 F Belgiorno and S L Cacciatori

The metric is (cf e.g. [11–13])

ds2 = −�r

ρ2

[
dt − a sin2 θ


dφ

]2

+
ρ2

�r

dr2 +
ρ2

�θ

dθ2 + �θ

sin2 θ

ρ2

[
a dt − r2 + a2


dφ

]2

,

(2.10)

where

ρ2 = r2 + a2 cos2 θ,  = 1 +
a2

l2
, z2 = q2

e + q2
m, (2.11)

�θ = 1 +
a2

l2
cos2 θ, �r = (r2 + a2)

(
1 − r2

l2

)
− 2mr + z2, (2.12)

and the electromagnetic potential and field strength are

A = − qer

ρ
√

�r

e0 − qm cos θ

ρ
√

�θ sin θ
e1, (2.13)

F = − 1

ρ4
[qe(r

2 − a2 cos2 θ) + 2qmra cos θ ]e0 ∧ e2

+
1

ρ4
[qm(r2 − a2 cos2 θ) − 2qera cos θ ]e3 ∧ e1, (2.14)

where we introduced the vierbein

e0 =
√

�r

ρ

(
dt − a sin2 θ


dφ

)
, (2.15)

e1 =
√

�θ sin θ

ρ

(
a dt − r2 + a2


dφ

)
, (2.16)

e2 = ρ√
�r

dr, (2.17)

e3 = ρ√
�θ

dθ. (2.18)

We are interested in the case where three real positive zeroes of �r appear: a cosmological
event horizon radius rc, a black hole event horizon r+ < rc, a Cauchy horizon r− � r+, with the
extremal case which is implemented when r− = r+ and the non-extremal case implemented
otherwise. The following reparameterization of �r is useful:

�r = 1

l2
(rc − r)(r − r+)(r − r−)(r + rc + r+ + r−), (2.19)

where the parameters m, z2, a2, l are replaced by rc, r+, r−, l. One easily finds

m = 1

2l2
(rc + r+)(rc + r−)(r+ + r−),

a2 = l2 − (
r2
c + r2

+ + r2
− + rcr+ + rcr− + r+r−

)
,

z2 = 1

l2
rcr+r−(rc + r+ + r−) − a2.
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We note that the above reparameterization implies a2 < l2. As to the determinant J of the
Jacobian matrix, we find

J = − 1

2l4
(rc − r+)(rc − r−)(r+ − r−)(2rc + r+ + r−)(rc + 2r+ + r−)(rc + r+ + 2r−), (2.20)

which is negative everywhere in the non-extremal case. In the extremal one, an analogous
reparameterization exists, with the only caveat that the number of independent parameters is
three (e.g. z2, a2, l).

As to the existence of black hole solutions for given values of the geometrical parameters,
a study of the existence of zeroes for �r is required (see also [12, 13]). A first observation is
that, in order that there exist four real zeroes, it is necessary that d2�r

dr2 admits two real zeroes,
and this leads again to the condition l2−a2 > 0. Qualitatively, one can point out that for m = 0
the function �r admits only two real zeroes r0 < rc and two (symmetric) positive maxima
and one positive minimum between them; for increasing m > 0, the minimum eventually
intersects the r-axis, say at m = m−

crit, providing the existence of two further zeroes r− � r+

which coincide for m = m−
crit (extremal black hole); an upper bound m+

crit to m has still to be
set, because the maximum on the right of the minimum eventually reaches the r-axis, where
r+ = rc, and then for m > m+

crit again two real solutions remain. The aforementioned two
critical situations are obtained by solving the system

�r = 0, (2.21)

�′
r = 0, (2.22)

where �′
r := d�r

dr
, i.e. the equivalent system

�r − r�′
r = 0, (2.23)

�′
r = 0. (2.24)

Equation (2.23) amounts to

3r4 − r2(l2 − a2) + l2(a2 + z2) = 0, (2.25)

its solutions are

R± =
√

l2 − a2

6
± 1

6

√
(l2 − a2)2 − 12l2(a2 + z2), (2.26)

and their existence, with R+ > R−, requires the condition (l2 − a2)2 − 12l2(a2 + z2) > 0, i.e.
a2

l2
� 7 − 4

√
3, (2.27)

which is sensibly more restrictive than a2

l2 < 1. Then, from (2.24), one finds the corresponding
critical values of the mass:

m±
crit = R2

±
l2

[
l2 − a2 − 2R2

±
]
. (2.28)

Then we find the condition (together with (2.27)) to be satisfied

m−
crit � m < m+

crit, (2.29)

with

m±
crit = l

3
√

6

⎛
⎝(

1 − a2

l2

)
±

√(
1 − a2

l2

)2

− 12

l2
(a2 + z2)

⎞
⎠

1
2

×
⎛
⎝2

(
1 − a2

l2

)
∓

√(
1 − a2

l2

)2

− 12

l2
(a2 + z2)

⎞
⎠ . (2.30)
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The same conditions can be obtained by studying the cubic resolvent associated with the
equation � = 0:

u3 − up̃ − q̃ = 0, (2.31)

where p̃ = 4w + p2

3 , q̃ = 2p3

27 + q2 − 8pw

3 , and where p = −(l2 − a2), q = 2ml2, w =
−l2(a2 + z2). The solutions of (2.31) are all real iff

q̃2

4
− p̃3

27
� 0, (2.32)

i.e. one has to impose p̃ > 0 (which amounts to (2.27)) and[
2m2l4 − 4

3
l2(l2 − a2)(a2 + z2) − 1

27
(l2 − a2)3

]2

− 1

27

[
(l2 − a2)2

3
− 4l2(a2 + z2)

]3

� 0.

(2.33)

The above inequality is implemented for m−
crit � m � m+

crit and for −m+
crit � m � −m−

crit. The
latter solution would correspond to negative values of the mass parameter m. Note also that
for m = m+

crit one would obtain a black hole with r+ = rc. We do not discuss the latter case
herein.

3. The Dirac equation

The Dirac equation for a charged massive particle of mass μ and electric charge e is

(iγ μDμ − μ)ψ = 0, (3.1)

where D is the Koszul connection on the bundle S ⊗ U(1), S being the spin bundle over the
Kerr–Newman–dS manifold, that is

Dμ = ∂μ + 1
4ωij

μ �i�j + ieAμ. (3.2)

Here ωij = ωi
kη

kj are the spin connection 1-forms associated with a vierbein vi , such that
ds2 = ηij v

i ⊗vj , η being the usual Minkowski metric. γμ are the local Dirac matrices, related
to the point-independent Minkowskian Dirac matrices �i by the relations γμ = vi

μ�i .
Here we use the representation

�0 =
(

O −I

−I O

)
, �� =

(
O −�σ
�σ O

)
, (3.3)

where

O =
(

0 0
0 0

)
, I =

(
1 0
0 1

)
, (3.4)

and �σ are the usual Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.5)

Thus

γμγν + γνγμ = −2gμν. (3.6)

Following the general results of [14] one can obtain variable separation as in [1]. We limit
ourselves to display the final result herein. The Petrov type D condition ensures the existence
of a phase function B(r, θ) such that

dB = 1

4Z(r, θ)

(
−2a

cos θ


dr − 2ar

sin θ


dθ

)
, (3.7)

5
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which indeed gives

B(r, θ) = i

4
log

r − ia cos θ

r + ia cos θ
. (3.8)

Now let us write the Dirac equation as

HDψ = 0. (3.9)

Under a transformation ψ �→ S−1ψ , with

S = Z− 1
4 diag(eiB, eiB, e−iB, e−iB), (3.10)

it changes as

S−1HDS(S−1ψ) = 0. (3.11)

If we multiply this equation times

U = iZ
1
2 diag(e2iB,−e2iB,−e−2iB, e−2iB), (3.12)

and introduce the new wavefunction

ψ̃ = (�θ�r)
1
4 S−1ψ, (3.13)

then the Dirac equation takes the form

(R(r) + A(θ))ψ̃ = 0, (3.14)

where

R =

⎛
⎜⎜⎝

iμr 0 −√
�rD+ 0

0 −iμr 0 −√
�rD−

−√
�rD− 0 −iμr 0
0 −√

�rD+ 0 iμr

⎞
⎟⎟⎠ , (3.15)

A =

⎛
⎜⎜⎝

−aμ cos θ 0 0 −i
√

�θL−
0 aμ cos θ −i

√
�θL+ 0

0 −i
√

�θL− −aμ cos θ 0
−i

√
�θL+ 0 0 aμ cos θ

⎞
⎟⎟⎠ (3.16)

and

D± = ∂r ± 1

�r

((r2 + a2)∂t − a∂φ + ieqer), (3.17)

L± = ∂θ +
1

2
cot θ ± i

�θ sin θ
(∂φ − a sin2 θ∂t + ieqm cos θ). (3.18)

The separation of variables can then be obtained by searching for solutions of the form

ψ̃(t, φ, r, θ) = e−iωt e−ikφ

⎛
⎜⎜⎝

R1(r)S2(θ)

R2(r)S1(θ)

R2(r)S2(θ)

R1(r)S1(θ)

⎞
⎟⎟⎠ , k ∈ Z +

1

2
. (3.19)
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4. Hamiltonian formulation

The Hamiltonian for the Dirac equation can be read from (3.14) rewriting it in the form [2]

i∂t ψ̃ = Hψ̃. (4.1)

Indeed we find

H =
[(

1 − �r

�θ

a2 sin2 θ

(r2 + a2)2

)−1 (
I4 −

√
�r√
�θ

a sin θ

r2 + a2
BC

)]
(R̃ + Ã), (4.2)

where I4 is the 4 × 4 identity matrix,

R̃ = −μr
√

�r

r2 + a2

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
E− 0 0 0
0 −E+ 0 0
0 0 −E+ 0
0 0 0 E−

⎞
⎟⎟⎠ , (4.3)

Ã = aμ cos θ
√

�r

r2 + a2

⎛
⎜⎜⎝

0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 −M− 0 0
M+ 0 0 0

0 0 0 M−
0 0 −M+ 0

⎞
⎟⎟⎠ , (4.4)

where

E± = i
�r

a2 + r2

[
∂r ∓ a

�r

∂φ ± i
eqer

�r

]
, (4.5)

M± =
√

�r

√
�θ

r2 + a2

[
∂θ +

1

2
cot θ ± i

�θ sin θ
∂φ ∓ eqm cot θ

�θ

]
, (4.6)

and

B =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎠ (4.7)

satisfy [B,C] = 0, B2 = C2 = I4. Cf also [2] for the Kerr–Newman case. We need now
to specify the Hilbert space. We do it as follows, in strict analogy with [1]. If we foliate
spacetime in t = constant slices St , the metric on any slice (considering the shift vectors) is

dγ 2 = γαβ dxα dxβ, (4.8)

where α = 1, 2, 3 and

γαβ = gαβ − g0αg0β

g00
, (4.9)

and local measure

dμ3 =
√

det γ dr dθ dφ = sin θ



ρ3√
�r − a2�θ sin2 θ

dr dθ dφ. (4.10)

In particular, the four-dimensional measure factors as

dμ4 = √−g00 dμ3 dt. (4.11)

7
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The action for a massless uncharged Dirac particle is then

S =
∫

R

dt

∫
St

√−g00
t
ψ∗�0γ μDμψ dμ3, (4.12)

where the star indicates complex conjugation. Here by St we mean the range of coordinates
parameterizing the region external to the event horizon: r > r+, that is St := S = (r+, rc) ×
(0, π) × (0, 2π). Then, the scalar product between wavefunctions should be

〈ψ |χ〉 =
∫
S

√−g00
t
ψ∗�0γ tχ dμ3. (4.13)

Let us also define

α(r, θ) :=
√

�r√
�θ

a sin θ

r2 + a2
. (4.14)

We can now use (4.10), (3.13) and the relation

γ 2 = et
0�

0 + et
1�

1 (4.15)

to express the product in the space of reduced wavefunctions (i.e. (3.13)):

〈ψ̃ |χ̃〉 =
∫ rc

r+

dr

∫ π

0
dθ

∫ 2π

0
dφ

r2 + a2

�r

sin θ√
�θ

t

ψ̃∗(I4 + α(r, θ)BC)χ̃, (4.16)

where a factor − 1
2 has been dropped. The matrix in the parenthesis in the previous equation

is the inverse of the one in the square brackets in (4.2), and it represents an improvement to
the dS case of the matrix which has been introduced in [2] for the Kerr–Newman case.

The above scalar product is positive definite, as we show in the following. Being ±1 the
eigenvalues of BC, we need to prove that

η := sup
r∈(r+,rc),θ∈(0,π)

α(r, θ) < 1. (4.17)

We can write α(r, θ) = β(r)γ (θ), with

γ (θ) = sin θ√
�θ

. (4.18)

Then

γ ′(θ) = cos θ

�θ

3
2

(
1 +

a2

l2

)
, (4.19)

so that γ reaches its maximum at θ = π/2 and

γ (π/2) = 1, (4.20)

which implies

α(r, θ) � β(r). (4.21)

Next, from

0 = �r(r+) (4.22)

we have

z2 − 2mr+ = −(
r2

+ + a2)(l2 − r2)/ l2 < 0, (4.23)

and then, for r+ � r � rc we have z2 − 2mr < 0 (note that l2 > r2
c for our case). Thus

β2(r) = a2�r

(r2 + a2)2
= a2

l2

l2 − r2

r2 + a2
+ a2 z2 − 2mr

(r2 + a2)2
� a2

l2

l2 − r2

r2 + a2
=: h(r). (4.24)

8
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Now, the last function is a decreasing function of r, so that for r � r+ > 0 we have
h(rc) � h(r) � h(r+) < h(0), so that

β2(r) � h(r+) = a2

l2

l2 − r2
+

r2
+ + a2

< h(0) = 1, (4.25)

and then

η �
√

h(r+) < 1. (4.26)

5. Essential self-adjointness of Ĥ

We follow strictly our analysis in [1], limiting ourselves to some essential definitions and
results. Let us introduce the space of functions L2 := (L2((r+, rc) × S2; dμ))4 with measure

dμ = r2 + a2

�r

sin θ√
�θ

dr dθ dφ, (5.1)

and define H〈〉 as the Hilbert space L2 with the scalar product (4.16). We will also consider a
second Hilbert space H(), which is obtained from L2 with the scalar product

(ψ |χ) =
∫ rc

r+

dr

∫ π

0
dθ

∫ 2π

0
dφ

r2 + a2

�r

sin θ√
�θ

t

ψ∗χ =
∫

dμt ψ∗χ. (5.2)

It is straightforward to show that ‖·‖〈〉 and ‖·‖() are equivalent norms. It is also useful to
introduce �̂2 : L2 → L2 as the multiplication operator by �2(r, θ):

�2(r, θ) := I4 + α(r, θ)BC. (5.3)

Then we have

〈ψ |χ〉 =
∫

dμt ψ∗�2χ = (ψ |�̂2χ). (5.4)

We introduce also �̂−2 : L2 → L2 as the multiplication operator by �−2

�−2(r, θ) := 1

1 − α2(r, θ)
(I4 − α(r, θ)BC), (5.5)

and analogously �̂, �̂−1 are defined as operators from L2 to L2 which multiply by �(r, θ),

�−1(r, θ) respectively, where � and �−1 are defined as the principal square root of �2 and �−2

respectively. They are injective and surjective. As operators fromH() toH(), �̂
2, �̂−2, �̂, �̂−1

are bounded, positive and self-adjoint.
Let us set H0 := R̃ + Ã, which is formally self-adjoint on H(), and define the operator

Ĥ 0 on L2 with

D(Ĥ 0) = C∞
0 ((r+, rc) × S2)4 =: D,

Ĥ 0χ = H0χ, χ ∈ D.
(5.6)

Note that D is dense in H(). Let us point out that for the formal differential expression H in
(4.2), which is formally self-adjoint on H〈〉, one can write H = �−2H0. Then we define on
L2 the differential operator Ĥ = �̂−2Ĥ 0, with

D(Ĥ ) = D,

Ĥχ = Hχ, χ ∈ D.
(5.7)

The same considerations as in [1] lead to the following conclusions: Ĥ is essentially self-
adjoint if and only if Ĥ 0 is essentially self-adjoint on the same domain (in different Hilbert
spaces); cf theorem 1 in [1]. See also [15] for the Kerr–Newman case. Moreover, one can show

9
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by means of variable separation (cf [1]) that Ĥ 0 is essentially self-adjoint. As a consequence,
there exists a unique self-adjoint extension T̂H0 with domain D ⊂ H() and, correspondingly,
a unique self-adjoint extension T̂H := �̂−2T̂H0 of Ĥ on D ⊂ H〈〉 (note that it is the same
domain on two different Hilbert spaces). We do not report the details of the variable separation
process, because they are the same as in [1]. We limit ourselves to sketch the main points. By
means of the unitary transformation

V = 1√
2

⎛
⎜⎜⎝

0 −i 0 i
i 0 −i 0
0 −1 0 −1

−1 0 −1 0

⎞
⎟⎟⎠ (5.8)

we get

V H0V
∗ =

⎛
⎜⎜⎝

1

r2 + a2
(ia∂φ + μ+(r))I

�r

r2 + a2
∂rI +

√
�r

r2 + a2
U

− �r

r2 + a2
∂rI +

√
�r

r2 + a2
U

1

r2 + a2
(ia∂φ + μ−(r))I

⎞
⎟⎟⎠ , (5.9)

where

μ±(r) := eqer ± μr
√

�r, (5.10)

and where U is the 2 × 2 matrix formal differential expression

U =
(

−μa cos(θ) i
√

�θ

(
∂θ + 1

2 cot(θ) + g
)

i
√

�θ

(
∂θ + 1

2 cot(θ) − g
)

μa cos(θ)

)
, (5.11)

with g := i 1
�θ sin(θ)

∂φ − 1
�θ

qme cot(θ).
Then the following variable separation ansatz:

V χ(r, θ, φ) = e−ikφ

√
2π

V

⎛
⎜⎜⎝

R1(r)S2(θ)

R2(r)S1(θ)

R2(r)S2(θ)

R1(r)S1(θ)

⎞
⎟⎟⎠ , (5.12)

with k ∈ Z + 1
2 , leads to the following reduction of the angular part: by defining bk(θ) :=

1
�θ sin(θ)

k − 1
�θ

qme cot(θ), one finds that the operator Ûk defined on D(Ûk) = C∞
0 (0, π)2

and whose formal differential expression is

Uk =
(

−μa cos(θ) i
√

�θ

(
∂θ + 1

2 cot(θ) + bk(θ)
)

i
√

�θ

(
∂θ + 1

2 cot(θ) − bk(θ)
)

μa cos(θ)

)
,

is essentially self-adjoint for any k ∈ Z + 1
2 for qme


∈ Z. If one considers the self-adjoint

extension ¯̂
Uk of Ûk , one can show that ¯̂

Uk has purely discrete spectrum which is simple
(see [1]).

Let us introduce the (normalized) eigenfunctions Sk;j (θ) := (
S1k;j (θ)

S2k;j (θ)

)
of the operator ¯̂

Uk:

¯̂
Uk

(
S1k;j (θ)

S2k;j (θ)

)
= λk;j

(
S1k;j (θ)

S2k;j (θ)

)
, (5.13)

10
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then Hk,j := L2
(
(r+, rc),

r2+a2

�r
dr

)2 ⊗ Mk,j , where Mk,j := {Fk;j (θ, φ)}, with Fk;j (θ, φ) :=
Sk;j (θ) e−ikφ√

2π
, is such that the eigenvalue equation for V Ĥ 0V

∗ becomes equivalent to the
following 2 × 2 Dirac system for the radial part (cf [1]):⎛

⎜⎜⎝
1

r2 + a2
(ak + μ+(r))

�r

r2 + a2
∂r +

√
�r

r2 + a2
λk;j

− �r

r2 + a2
∂r +

√
�r

r2 + a2
λk;j

1

r2 + a2
(ak + μ−(r))

⎞
⎟⎟⎠ X = ωX, (5.14)

where X(r) := (
X1(r)
X2(r)

)
, and we introduce a radial Hamiltonian ĥk,j , which is defined on

Dk,j := C∞
0 (r+, rc)

2 and has the following formal expression:

hk,j :=

⎛
⎜⎜⎝

1

r2 + a2
(ak + μ+(r))

�r

r2 + a2
∂r +

√
�r

r2 + a2
λk;j

− �r

r2 + a2
∂r +

√
�r

r2 + a2
λk;j

1

r2 + a2
(ak + μ−(r))

⎞
⎟⎟⎠ . (5.15)

In the following, we study essential self-adjointness conditions for the reduced Hamiltonian
ĥk,j .

Essential self-adjointness of ĥk,j . The differential expression hk,j is formally self-adjoint in

the Hilbert space L2
(
(r+, rc),

r2+a2

�r
dr

)2
. In order to study the essential self-adjointness of the

reduced Hamiltonian in C∞
0 (r+, rc)

2 one has to check if the limit point case occurs both at the
event horizon r = r+ and at r = rc. We show that the following result holds.

Theorem 1. ĥk,j is essentially self-adjoint on C∞
0 (r+, rc)

2.

Proof. We choose the tortoise coordinate y defined by

dy = r2 + a2

�r

dr, (5.16)

and obtain y ∈ R with y → ∞ as r → rc and y → −∞ as r → r+. Then we get

hk,j =
(

0 ∂y

−∂y 0

)
+ V (r(y)), (5.17)

and the corollary to theorem 6.8, p 99 in [16] ensures that the limit point case holds for hk,j at
y = ∞. The same corollary can be used also for concluding that the limit point case occurs
also for y = −∞ and this allows us to claim that the above theorem holds true. �

It is also useful to point out that it holds

lim
y→−∞ V (r(y)) =

(
ϕ+ 0
0 ϕ+

)
, (5.18)

where

ϕ+ := 1

r2
+ + a2

(ak + eqer+), (5.19)

and that

lim
y→∞ V (r(y)) =

(
ϕc 0
0 ϕc

)
, (5.20)

where

ϕc := 1

r2
c + a2

(ak + eqerc). (5.21)

11
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6. The non-existence of time-periodic normalizable solutions

As it is well-known from the study of the Kerr–Newman case and of the Kerr–Newman–
AdS case [1, 5, 6, 8, 17], eigenvalues for the Hamiltonian H correspond to the solutions of
the following system of coupled eigenvalue equations have to be satisfied simultaneously in
L2

(
(0, π), sin(θ)√

�θ
dθ

)2
and in L2

(
(r+, rc),

r2+a2

�r
dr

)2
respectively:

¯̂
UkωS = λS (6.1)

and
¯̂hk,jX = ωX. (6.2)

Note that the Dirac equation (3.14) in the Chandrasekhar-like variable separation ansatz (3.19)
reduces to the couple of equations (6.1) and (6.2).

The spectrum of the angular momentum operator ¯̂
Ukω is discrete for any ω ∈ R, as it

can be shown in a step-by-step replication of the calculations appearing in [1]. We show that
both in the non-extremal case and in the extremal one the radial Hamiltonian ¯̂hk,j for any λk;j
has a spectrum that is absolutely continuous and coincides with R, and then we infer that no
eigenvalue of ¯̂H exists. As a consequence (cf remark 1 in [1]), we can exclude the existence
of normalizable time-periodic solutions of the Dirac equation.

Spectrum of the operator ¯̂hk,j . In order to study the spectral properties of ¯̂hk,j , as in [1] we
introduce two auxiliary self-adjoint operators ĥhor and ĥrc

:

D(ĥhor) = {
X ∈ L2

(r+,r0)
, X is locally absolutely continuous;B(X) = 0; ĥhorX ∈ L2

(r+,r0)

}
,

ĥhorX = hk,jX;
D(ĥrc

) = {
X ∈ L2

(r0,rc)
, X is locally absolutely continuous;B(X) = 0; ĥrc

X ∈ L2
(r0,rc)

}
ĥrc

X = hk,jX.

(6.3)

r0 is an arbitrary point with r+ < r0 < rc, at which the boundary condition B(X) :=
X1(r0) = 0 is imposed. We also have defined L2

(r+,r0)
:= L2

(
(r+, r0),

r2+a2

�r
dr

)2
and

L2
(r0,rc)

:= L2
(
(r0, rc),

r2+a2

�r
dr

)2
. Note that we omit the indices k, j for these operators.

As to the spectral properties of ĥrc
, a suitable change of coordinates consists in introducing

a tortoise-like coordinate defined by equation (5.16). It is then easy to show that the following
result holds.

Lemma 1. σac(ĥrc
) = R.

Proof. The proof is completely analogous to that of lemma 3 in [1]. We still provide the
details. Theorem 16.7 of [16] allows us to find that the spectrum of ĥrc

is absolutely continuous
in R − {ϕc}. This can be proved as follows. Let us write the potential V (r(y)) in (5.17)

V (r(y)) =
(

ϕc 0
0 ϕc

)
+ P2(r(y)), (6.4)

which implicitly defines P2(r(y)). The first term on the left-hand side of (6.4) is of course
of bounded variation; on the other hand, |P2(r(y))| ∈ L1(d,∞), with d ∈ (y(r0),∞). As a
consequence, the hypotheses of theorem 16.7 in [16] are trivially satisfied, and one finds that
the spectrum of ĥhor is absolutely continuous in R − {ϕc}.
12
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We show also that ϕc is not an eigenvalue of ĥrc
. As in the Kerr–Newman case (cf [5]),

one needs simply to study the asymptotic behavior of the solutions of the linear system

X′ =

⎛
⎜⎜⎝

−λk;j

√
�r

r2 + a2
ϕc − 1

r2 + a2
(ak + μ−(r))

1

r2 + a2
(ak + μ+(r)) − ϕc λk;j

√
�r

r2 + a2

⎞
⎟⎟⎠ X

=: R̄(r(y))X, (6.5)

where r = r(y) and where the prime indicates the derivative with respect to y. One easily
realizes that ∫ ∞

d
dy|R̄(r(y))| < ∞, (6.6)

and then (cf Levinson theorem e.g. in [18]: theorem 1.3.1, p 8) one can find two linearly
independent asymptotic solutions as y → ∞ whose leading order is given by XI = (1

0

)
and

XII = (0
1

)
. As a consequence no normalizable solution of equation (6.5) can exists, and then

ϕc cannot be an eigenvalue. �

The following result holds.

Theorem 2. σac(
¯̂hk,j ) = R.

Proof. Thanks to standard decomposition methods for the absolutely continuous spectrum
(see the appendix) the proof is trivial, because the absolutely continuous part of ¯̂hk,j is
unitarily equivalent to the absolutely continuous part of ĥhor ⊕ ĥrc

. As a consequence,
σac(

¯̂hk,j ) = σac(ĥhor) ∪ σac

(
ĥrc

)
. The latter set is R (see lemma 1). �

The presence of a cosmological horizon which is non-degenerate (i.e. it corresponds
to a simple zero of �r ) is as seen the main ingredient for the above conclusion. A rough
explanation for this result is that such a presence forbids the possibility to get normalizability
of the time-periodic solutions. The rationale beyond it is the above result concerning the
absolutely continuous spectrum.

7. Conclusions

By extending the results obtained in [1], we have shown that the Dirac Hamiltonian for a
charged particle in the background of a Kerr–Newman–de Sitter black hole is essentially self-
adjoint on C∞

0 ((r+, rc) × S2)4. Moreover, our analysis has revealed that the point spectrum of
the Hamiltonian is empty, which is equivalent to the condition for the absence of normalizable
time-periodic solutions of the Dirac equation. The latter result has been shown to hold true even
in the extremal case, which is usually much harder to be checked, in a rather straightforward
way, and the role of the (non-degenerate) cosmological event horizon in this respect has been
pointed out.

Appendix. Decomposition method for the absolutely continuous spectrum

For the sake of completeness, we give some more details about the decomposition method
(or the splitting method) [16, 19–21] as applied in the analysis of the absolutely continuous
spectrum. It is surely known to experts, but perhaps not so explicitly written in the literature.

13
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The following proof is essentially an extended version, trivially adapted to the Dirac case, of
the proof appearing at p 239 of [16] for the Sturm–Liouville case, and it also appeals to the
proof of Korollar 6.2 in [22].

Let us consider a Dirac system with formal differential expression τ , formally self-adjoint
in a suitable Hilbert space which we indicate with L2(a, b) for short, with (a, b) ⊂ R. See
[16, 22] for more details. Let us introduce the maximal operator K̂ associated with the formal
expression τ , with domain

D(K̂) = {X ∈ L2(a, b),X is locally absolutely continuous; K̂X ∈ L2(a, b)},
and the minimal operator K̂0 defined as the closure of the operator K̂ ′

0 defined on

D(K̂ ′
0) = {X ∈ D(K̂);X has compact support in (a, b)},

and with formal expression τ . For an explicit characterization of K̂0 see also [16]. Let T̂ be a
self-adjoint extension of K̂0.

Let us also define (cf Korollar 6.2 in [22]) K̂00 as the operator with the same formal
expression τ and domain D(K̂00) = {X ∈ D(K̂0);X(c) = 0}, with c ∈ (a, b). If K̂a,0, K̂b,0

are the minimal operators associated with τ in L2(a, c) and L2(c, b) respectively, one has
K̂00 = K̂a,0 ⊕ K̂b,0. Let T̂a and T̂b be self-adjoint extensions of K̂a,0, K̂b,0; then both T̂ and
T̂a ⊕ T̂b are finite-dimensional extensions of K̂00. (Incidentally, this is enough for concluding
that the essential spectrum of T̂ coincides with the essential spectrum of T̂a⊕T̂b, which is part of
the content of Korollar 6.2 in [22], and proves the splitting method for the essential spectrum).
As a consequence, the difference of their resolvents D̂ := (T̂ − ζ I )−1 − (T̂a ⊕ T̂b − ζ I )−1,
(with ζ ∈ ρ(T̂ ) ∩ ρ(T̂a ⊕ T̂b)), is an operator of finite rank (see [23], lemma 2, p 214). Then,
according to the Kuroda–Birman theorem (see e.g. theorem XI.9, p 27 in [24]; see also [25]),
the wave operators �±(T̂ , T̂a ⊕ T̂b) exist and are complete. As a consequence, the absolutely
continuous part of T̂a ⊕ T̂b is unitarily equivalent to the absolutely continuous part of T̂ , and
this in turn implies that σac(T̂ ) = σac(T̂a ⊕ T̂b) = σac(T̂a) ∪ σac(T̂b).
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